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Abstract. The antiferromagnetic and double superconducting transitions in Upt, are studied by 
using a high-degeneracy model. Within the model, superconductivity is stimulated by long-range 
antiferromagnetic order. Two scenarios of the tempture  behaviour are possible for the dose- 
pncked hexagonal structure. In the first scenario the double superconducting transition follows 
an antifemmagnetic transition (TNI > T,I > Tc2). In the second scenario the superconducting 
transition follows two consecutive antiferromagnetic transitions (ZVI w Tw 5- Tc). For both 
scenarios the superconducting gap is anisotropic and vanishes along lines on the Fermi surface. 
The specific heat has the T2 behaviour in the superconducting state. 

1. Introduction 

During the last few years much attention has been devoted to studying the properties of the 
heavy-fermion superconductor Wt3 (see, for example, recent review papers [1,2]). With 
decreasing temperature, the heavy-fermion, antiferromagnetic and superconducting states 
appear successively and coexist. The heavy-fermion state is formed by the coherent Kondo 
effect at temperatures below the Kondo temperature TK. In this state electrons have enhanced 
mass m" 200ma near the Fermi surface [3]. Neutron-scattering experiments have revealed 
that an antiferromagnetic order arises at the NBel temperature TN = 5.5 K [4,5]. The 
corresponding antiferromagnetic structure is represented in figure 1. The moments of the U 
atoms in the state are anomalously small (0.02 p ~ )  r4.51. Then, at temperature Tc - 0.5 K 
the compound undergoes a superconducting transition [6]. Below Tc the antiferromagnetic 
order and superconductivity coexist. More detailed investigations have shown that there 
are two consecutive superconducting transitions [7]. Moreover, Wt3 has a complete H-T 
phase diagram [7-10]. For the purpose of explaining the splitting of the superconducting 
transition, a phenomenological model based on the mutual influence of multicomponent 
d-type~superconductivity and antiferromagnetism has been proposed and studied in detail 
[lo-141. 

The superconducting state of UPt3 has unusual properties. In that state some physical 
parameters demonstrate a power-law temperature dependence, while the Bardeen-Cooper- 
Schrieffer (BCS) theory predicts a simple exponential law. For example, the observation of 
the T 2  dependence in the specific heat has been reported in [7,15,16]. Such a temperature 
behaviour of the specific heat can he related to an anisotropic superconducting gap, which 
vanishes along lines on the Fermi surface [17]. 

Unusual superconducting properties of UPt3 and other heavy-fermion superconductors 
such as URuzSiz, UBe13 and CeCuzSiz have stimulated an active search for an 
unconventional mechanism of superconducting coupling. A detailed list of references on 
the problem may be found in [Z]. 

0953-8984/94/091749+12$19.50 @ i994 IOP Publishing Ltd 1749 
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Figure 1. Positions of the U %toms in UPt, are 
represented by open and full circles in two adjacenr 
planes. respectively. Arrpws represent the momenls of 
the U atoms. a and b are the translation vectors of 
the close-pack& hexagqnal structum A and B are 
the translation vectors of the antiferromagnetic,svuaure 
lhat arises at TN = 5.5 Kin U% [4,5]. 

Figure 2. XY plane of the first Brillouin zone for 
the close-packed hexagonal SVUcture. Dashed lines 
represent the reduced Brillouin zone corresponding 
to the antifenomagnetic slmclure of UP$ shown in 
figure 1. Q1 and Q2 are the reciprocal vectors of 
the antiferromagnetic slmctm. Dotted lines, divide the 
reduced Brillouin zone into four regions RI, 0 2 .  Cl3 
and Cia. 

Recently I have proposed a new non-phonon mechanism of superconductivity for 
heavy-fermion superconductors 1181;~ I have found that long-range antiferromagnetic order 
appearing at TN c: TK can change the character of the local exchange interaction between 
conduction electrons and localized f electrons in such a way that at T < TN this interaction 
generates the superconducting coupling between heavy electrons near the Fermi surface. 
This mechanism of superconductivity leads to the anisotropic superconducting gap, which 
vanishes along lines on the Fermi surface [19]. Within the model I have also studied the 
properties of the antiferromagnetic state that precedes the superconducting transition. It has 
been found that the moments of rare-earth ions in the state are of the order lo-* p~ in 
agreement with the experimental data. 

In the present paper I apply the model to describe antiferromagnetic and superconducting 
transitions in heavy-fermion superconductors with the close-packed hexagonal stmcture. 
UPt3 has such a structure, for example. For the structure the model predicts two possible 
scenarios of the temperature behaviour. In the first scenario an antiferromagnetic transition 
occurs first with decreasing temperature below the Kondo temperature TK. Then, a double 
superconducting transition takes place, that is TN, > T,1 > Tcz. In the second scenario 
two consecutive anliferromagnetic transitions occur first. Then, the system undergoes the 
superconducting transition (&I 1 f ~ z  > Tc). In both scenarios the superconducting state 
is characterized by an anisotropic gap, which is equal to zero on lines on the Fermi surface. 

The paper is organized as follows. In section 2 the structure of the antiferromagnetic 
order in UPt3 is analysed. In section 3, I study peculiarities of the antifenomagnetic state 
and the k dependence of the spin-density-wave (SDW) gap. I find that the system contains 
two antiferromagnetic instabilities. In section 4 it will be shown that these antiferromagnetic 
instabilities can stimulate two consecutive superconducting transitions. The particularities 
of the superconducting states and the k dependence of the superconducting gap are studied 
in section 4 also. Finally, section 5 contains some concluding remarks and a proposal for 
an experimental verification of the model under consideration. 
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2. Antiferromagnetic structure in UPt3 

uPt3 has the closepacked hexagonal structure. Two adjacent planes of the sttllcture are 
represented in figure 1. The corresponding translation vectors are 

a = (-$&U, -;U, 0) ’ b = ($&a, -$I, 0) 

pi =(O,O,O) p z = ; a + ~ b + ~ c = ( ~ ~ a , - ~ a , ~ c ) .  (2.2) 

c = (O,O, c). (2.1) 

A unit cell of the structure contains two U atoms at positions 

In figure 1 the U atoms at these positions are denoted by numbers 1 and 2, correspondingly. 
The reciprocal vectors are 

gi = 2~(-&/3a, - I / u ,  0) 9 2  = 2 ~ ( & / 3 a ,  - l / a ,  0) gj = Zn(O,O, l/c). 
(2.3) 

Neutron-scattering measurements have revealed that a long-range antiferromagnetic 
order arising at TN = 5.5 K has the structure represented in figure 1 [4]. The translation 
vectors of the antiferromagnetic structure are given by 

A = b - a = (&U, 0,O) B =.-a - b = (0, a,  0) C = C. (2.4) 

Consequently, the corresponding reciprocal vectors are 

It may be easily shown that the unit-cell volume (a, = IA.BxCI) of the antiferromagnetic 
structure is twice as large as the unit-cell volume (C2 = la. b x cI = l/?azc/2) of the initial 
lattice. 

The first Brillouin zone of the close-packed hexagonal lattice looks like a prism with a 
regular hexagon as a basis (see figure 2). The antiferromagnetic order results in a reduction 
of the zone. The reduced Brillouin zone is a rectangular prism formed by reciprocal vectors 
(2.5). The volume of the reduced Brillouin zone is twice as small as the volume of the 
initial zone. 

3. Antiferromagnetic ordering 

I shall study antiferromagnetism and superconductivity of heavyfermion  compounds by 
using the Hamiltonian [18] 

H o = C & ~ C ~ ~ c ~ ~ + C & f f ~ f ~ i  - N-1’2CV(bif~c,;+HC)+ J1N-3cSf -S i  
ok oi vi 

nqi 
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where k is the wavenumber, the spin quantum numbers a and q run from - j  to j ,  and 
N = 2 j  + 1 is the spin degeneracy. The sum over i is the sum over U atoms. The 
exchange constants 51 and 52 are supposed to be positive. The spin operators S,i and Si 
are determined as 

s ; i = C u f ; f . i  S : ; = ~ u c : i c . i .  
' "  0 

Within the slave-boson method, the constraints 

(3.2) 

are imposed on each lattice site Ri. 
In the framework of the mean-field approach, the effective Hamiltonian (HMF) and 

mean-field free energy (FMF) of the model under consideration are given by the following 
equations [lS,  191: 

(3.5) 

where h ET - q, E; is the renormalized energy of the f level, p is the chemical 
potential, and fit is the operator of the total number of electrons. The order parameters 
rei, Mti, Mci, Ai and the energy E; may be found by solving the equations 

Mfi = N -2 (S,) L Mci = N-2(S:;) 
~ 

where nf is the occupancy of the f level per orbital. These equations result from the 
minimization of the, free energy FMF with respect to the order parameters. 

I shall consider only the case wheh the Kondo temperature TK is much larger than TN and 
Tc. This enables us to neglect the effect of antiferromagnetic ordering and superconductivity 
on the parameters ro and ET that characterize the heavy-fermion state. 

Let us study the properties of the antiferromagnetic state with the structure represented 
in figure 1. One can easily check that the antiferromagnetic order with wavevector &I (2.5) 
corresponds to the antiferromagneticstructure. In the antiferromagnetic state we have 

Mr(c)i = Mrc,) COS(&I Ri + ~ ( q )  

Therefore, the spin density wave is characterized by four parameters: two amplitudes Mr 
and Mc, and two phases 'pr and 'pc. However, it is more suitable to introduce four different 
parameters. One can write 

(3.7) 

, 

= Mf(c)(Ri) =~Mr(c)(Rnim + h) = M$> cos&i&rm 



Magnetism and superconductivity in UPt3 1753 

where &lm =- na + lb + mc, and R; = &lm + P , ~  is the radius vector of the U atoms 
in the lattice. The vector P , ~  (s = ~ 1 , 2 )  is determined by equations (2.2). The quantities 
Mj” and Mi” are the moments of the U atoms at positions 1 and 2 within each unit cell 
(see figure 1). Since COSQIR,~, = (-ly+‘, one can conclude that the antiferromagnetic 
structure (3.7) is equivalent to the structure represented in figure 1. Mi1) and M2zl are the 
magnitudes of the spin density wave (SDW) formed by conduction electrons at the points 

Substituting (3.7) into (3.4),  one obtains the mean-field Hamiltonian describing the 
PI and PZ. 

antiferromagnetic state: 

where k runs over regions Q (1 = 1, . . . , 4 )  of the reduced Brillouin zone (see figure 2). 
Moreover, 

(3.9) 

The hybridized bands Euk (U = 1,2) are determined by the equations 

1 Elk = ?[Eh + E ;  - [ ( E l :  -E;)’ +4vzri]112} 

E2k = ${Ek + E ;  + [(Ek - E $  f 4 V  ‘01 1. 2 2 112 

(3.10) 

(3.11) 

The annihilation operators bvok for quasiparticles in these bands are related to the 
operators C,k and fnk by the Bogoliubov transformation 

(3.12) 

It is well known that the quasiparticles in the band Elk near the Fermi surface have 
enhanced mass m*/mo = COS-~LYF - l /pFQ, where pp is the density of states on the Fermi 
surface. 

In order to find the energy spectrum in the antiferromagnetic state, it is necessary to 
diagonalize the Hamiltonian (3.8). In accordance with 1181 we have 

where p =pi if k E 01. 
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I shall only consider the case when the total number of electrons (nt = n,+nf) per orbital 
is smaller than 1/2. ' I t  means that the lower antiferromagnetic band Ell, is partially full 
and the quasiparticles near the Fermi surface have enhanced mass. The antiferromagnetic 
transition opens a gap on those flat parts of the Fermi surface which are near the surface of 
the reduced Brillouin zone. Using (3.10) and (3.13). one obtains that the gap is 

&&, = A&, = 2Ji [ ( u / N ) l [ ( M ? )  + moMf)/m')* + (Mi') + moM~)/m*)*  

+ (,;I) + moMf'/n")(M;2' + moMf)/m")]l /2  (3.14) 

in the regions L21 and Qz, and 

A€, = A&4 = 2J1 I(u/N)[MA" - ML2) + m o ( M f )  - MF')/m*]/ (3.15) 

in the regions i-23 and 0 4 .  According to these equations, in the general case the SDW gap 
is anisotropic. A more detailed analysis of the anisotropy will be given below. 

For the purpose of determining the Nkel temperature and the structure of the 
antiferromagnetic state, let us consider an expansion of the free energy (3.5) in M:(&. 
The magnetic contribution of order O(M*) to the free energy per orbital and unit cell is 

& = - ~ J I  I1xdQ1)a; + :xc(Qi)a: +acadF(Qi) + J;'I + ~ I x d Q i )  +4xr(Qz)lb~ I 2 3  

+ $lxdQi) -t 4~&z)lb? +btbdF(Qz) + JT'II (3.16) 

where 

(3.17) 

(3.18~) 

where 

S,'(Qi) = ucokcok-~,  + st(Qz) = "c:kCrk-Q,. (3.19) 

In the temperature range TN < T < TK the correlation functions (3.lSa) may be written as 

- 
o.kcn,+n, o,ken,+% 

(3.18b) 

j ( j  + 1) tanh(E,k/ZT) - tanh(Ep,/2T) 
F (Qi )=  6 N 2  V d V v p U p K U p p  

E u k  - Epp kE?2, 

where 6 ,  = i 2 l  f Q 2  and p = k  - Q 1  fori= 1, and 8, = Q g + &  and p = k  - Q2 for 
I = 2. It is important to note that the functions xC($(Ql) and F(Ql) are determined only 
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by the energy spectrum in the regions 01 and Q2, whereas xcco(Qz) and F(Q2) depend 
only on the energy spectrum in the regions Q3 and S24. In the limit N >> 1 the functions 
x(Q) and F(Q) are of order O(1). The character of the temperature behaviour of the 
functions (3.18b) may be easily found in the case when the Fermi surface contains flat parts 
that satisfy the nesting condition Elk - p = p - El ,  in the regions f21 and dz. One obtains 
that xc(o(Q,), F(Q1) - In(&/T) where TO is the low-temperature scale (for details see 
118,191). 

. ~ 

The N6el temperature may be found from the equation 

detp2&/aAiahjl = o (3.20) 

where hi = a,, ar, b,, br. Equation (3.20) has two solutions. The former corres onds to the 
in 

accordance.with (3.17). In other words, in this antiferromagnetic state the moments My) 
and M p )  of the U atoms at positions 1 and 2 within a unit cell (see figure 1) are the same. 
The corresponding N6el temperature TNI is determined by the equation 

formation of an antiferromagnetic state with a,(o # 0 and beti = 0, that is Mco (8 - - 

4U + JiF(Qi)I2 = gJ?xf(Qi)xdQi). (3.21) 

The other solution corresponds to the formation of an antiferromagnetic state with a,o = 0 
and b,(o # 0, that is M$, =~ -Mi:;. The corresponding equation for the unrenormalized 
Ntel temperature TNZ is 

411 +~JiF(Qdl2 = J : k ( Q i )  +4XdQz)l[xdQi) +4xdQdI. (3.22) 

The antiferromagnetic structure observed in uPt3 [4] and represented in figure 1 is the 
structure with M:” = My). That is why I shall only study the case TNI > TNZ that takes 
place if xf(c)(Ql) > 2~f(~)(Q2).  Using equations (3.14) and (3.15), one obtains that at TNI 
the SDW gap is open only on those pats of the Fermi surface which lie in the regions Q1 
and Q2, i.e. A&,,z # 0, A& = 0. In other words, in k-space the SDW gap does not open in 
directions normal to the wavevector Q, of the antiferromagnetic smcture. Moreover, in the 
antiferromagnetic state ‘the energy spechum in the regions Q 3  and S24 is not renormalized, 
because at M$) = Mi:) the parameter Ai: (3.10) at p = k f QZ is equal to zero and, 
consequently, E l k ,  = Elk for k E Q3, Q4. 

In my previous papers [IS, 191 it has been shown in the framework of model (2.1) that 
long-range antiferromagnetic order changes the character of the exchange interaction with 
the constant 52. This interaction brings about the superconducting coupling between heavy 
electrons near the Fermi surface. Therefore, with decreasing temperature there are two 
possible scenarios of the temperature behaviour. In the first scenario the superconducting 
transition occurs before the second antiferromagnetic transition, i.e. T N ~  > T > T N ~ .  In the 
other scenario the second antiferromagnetic transition at TNZ follows the transition at TNI. 
Then, the system undergoes at Tc the superconducting transition, i.e. TNI > TNZ > Tc. 

4. Double superconducting transition 

First I shall consider the scenario TNI > T, > T N ~  and show that there are actually two 
consecutive superconducting transitions, TNI > T,I TCz. 
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In the superconducting state the local superconducting order parameter Ai (see 
equation (3.6)) becomes non-zero and has the following space dependence [ 181 

At = A(Ri)  = A(R,i, + p,,.) = A(")cosQIR,,I, (4.1) 

where A(') and A(2) are the values of $e local superconducting order parameter at positions 
1 and 2 within each unit cell. After diagonalization of the Hamiltonian (3.8) described in 
[ I Q ,  the mean-field Hamiltonian (3.4) is given by 

(4.3) 

where Nu is the number of unit cells. 
Let us determine the structure of the superconducting state and critical temperature T,. 

The critical temperature Tcl of the first superconducting transition may be determined from 
the equation a2&/,lad ad" = 0. Taking into account that, at T < TN~, a,(q # 0 and b,(q = 0, 
this equation may be written as 

:Jz(af - aC)'K(QI) = I .  (4.9) 

In the general case the function K ( Q ! )  is proportional to In(G/T) at low temperatures. 
At T i T,1 the superconducting state with d # 0 and g = 0 arises. It means, 

in  accordance with (4.5), that A(]) ,  = A(') # 0. Below Tcl antiferromagnetism and 
superconductivity coexist. The superconducting transition opens the gap [A,,k(Qi)[ on 
the Fermi surface. ,Because at T ,e Tcl the system is in the state with Mil; = M$) 
and A(') = AV), equations (4.3) and (4.4) give lA,t(Ql)l # 0 and lA,,k(Qz)I = 0. In 
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other words, the superconducting transition at Tci opens the gap only on those parts of the 
Fermi surface which lie in the regions !& and QZ of the reduced Brillouin zone. The rest 
of the Fermi surface remains un apped. Because.the superconducting state preserves the 

unrenormalized. 
With decreasing temperature below Tcl the system under consideration can undergo 

another superconducting phase transition into a state with broken symmetry between the U 
atoms in the unit cell. To find the corresponding critical temperature TCz, it is necessary 
to consider the quadratic expansion of the free energy (3.5) in parameters b and g. Using 
equations (3.16) and, (4.7), one obtains 

magnetic symmetry M& = .M& f the energy spectrum in the regions S& and Sl, is still 

3m.x  = -3J1 I 2 1  ( ~ [ X ~ ( Q ~ ) + ~ X ~ ( Q Z ) I ~ Z +  tr~.(Qi)+4~.(Q*)lb~++b,br[F(Qz)+J;’I} 

+ 1J;’lgl2 - ~(ac-a,)(bt-b,)(d*g+dg*)K(Qi). (4.10) 

Here the correlation functions xc(o(Ql) (3.1%~) and K(Q1) must be calculated taking 
into account both antiferromagnetic order with M&)) = Mi:)) and superconductivity with 
A#k(Ql), because they are determined by integration over the regions RI and R2 where the 
energy spectrum is strongly renormalized. In order to find K(Ql) it is necessary to replace 
in (4.8) the function Elkri - f i  by the function [ (E lko - fi)’ + l A ~ ~ ( Q ~ ) l ~ l ~ ’ ~ .  At T < TI 
the functions are regular functions and decrease with decreasing temperature. However, ihe 
functions xCo(Q2) and F(Q2) preserve the singular behaviour (- In(To/T)) determined 
by (3.18b), since the energy spectrum in the regions QS and Qq is still unrenormalized. 

It is interesting to note that the last term in equation (4.10) may be written as 

- i [ (M[” -Mi1))’ - ( M y )  - M~2))Z](lA‘i’12 - [A(z)12)K(Ql). 

Thus, it looks like a contribution to the free energy arising due to coupling between 
antiferromagnetism and superconductivity in the phenomenological approach [ 10-14]. 

The critical temperature T d  may be found from the equation detp2Fm,,/aAi %.,I = 0 
where A, = be, br, g, g’, which may be written in the form 

411 + J iF(QdI2  = J:[xr(Qi) + 4 ~ r ( Q z ) l [ ~ d Q i )  + 4 ~ d Q d I  + S J z h  - 4ldI2K2 

x (Qi)($[xr(Qi) + ~ d Q i ) l +  X d Q d  + ~ d Q d  + F(Qd + Jr’Z (4.11) 

As discussed above, at T < Tcl < TNI the correlation €unctions x.m(Ql) and F(Q1) 
are strongly renormalized, whereas the functions xcc~(Qz)  and F(Q2) remain singular 
(- In(T’/T)). This fact permits the existence of a solution of equation (4.11). 

At T < Ta the magnetic order parameter bt(c) = Mi::) + Mi:) and superconducting 
order parameter g = A(’) + A@) simultaneously become non-zero. Therefore, in this state 
we have Mii) # M y )  and A(’)  # A(’). It means that the second-order phase transition 
at Tc2 disturbs both magnetic and superconducting symmetry between the U atoms within 
each unit cell. 

It is interesting to note that equation (4.11) for TCz differs from equation (3.22) for the 
unrenormalized critical temperature T N ~  by the last term on the right-hand side. This term 
results from an interaction between magnetic and superconducting fluctuations. Moreover, 
since the term is positive, this interaction precipitates the transition at TN2. One can classify 
the phase transition at T2 as a mixed magneticsuperconducting transition. As I have 
shown above, the part of the Fermi surface lying in the regions QI and S22 is gapped in the 
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temperature range TNI z T > Ta. The remaining part of the surface lying in the regions 
Q3 and Q 4  is ungapped. The phase transition at TCz opens both the SDW gap A&3,4 and the 
superconducting gap [A,k(Q2)1 determined by equations (3.15) and (4.4), respectively, on 
the remaining part of the Fermi surface in the regions Q, and S& of the reduced Brillouin 
zone. 

Let us study the k dependence of the superconducting gap (A,k(Q)l at T < Kz. 
The dependence is mainly determined by the function cos[2pk(Q)] (see equations (4.3) and 
(4.4)). The function is equal to zero on the surface of the reduced Brillouin zone (the dashed 
lines on figure 2) where the following equalities hold: Elk = E i k - ~ , ,  E l k  = E I ~ - Q ~ .  Let 
us consider an intersection between *e Fermi surface (&kc = p) and the surface of the 
reduced Brillouin zone. In general, we obtain some lines along which we have cos(2p) = 0. 
In accordance with (4.3) and (4.4) the superconducting gap IA,k(Q)l is also equal to zero 
along the lines. Such an anisotropy of the superconducting gap leads to the Tz behaviour 
of the specific heat at T < Tc2 [17]. This theoretical result is in agreement with the 
specific-heat meamrements for UPt3 [7,15,16]. 

Now I briefly consider the other scenario (TNl > TNZ > Tc) of the temperature behaviour 
of model (2.1). As discussed above insection 3, in the temperature range TNI z T =- TNZ the 
system is in the antiferromagnetic state with M F )  = My’. This magnetic symmetry between 
the U atoms in positions 1 and 2 within each unit cell is broken at the critical temperature 
TN2 determined by equation (3.22) where xe(Ql )~  and xf(Ql) have to be calculated with 
account of non-zero M,(o, whereas the functions xc(o(Qz) and F(Qz) are still singular. An 
antiferromagnetic state with M,‘” # M F )  is formed below TNZ. The antiferromagnetic state 
stimulates a superconducting transition. The corresponding critical temperature T, may be 
found by using the free energy (4.7) at a,(n # 0 and bc(o # 0 

[J;’ - - U ~ ~ K ( Q I ) I ~ J ; ’  - (bi - bd2[2K(Q2) + $K(Qr)lI 

= $(U, - ad2(bf - bd2K2(Qi) (4.12) 

where K(Q) is determined by (4.8). At T c T, the superconducting state with 
superconducting order A(’) # A(’) is formed and coexists with the antiferromagnetic state 
with # My’. The superconducting state has the same properties as the state at T < T,z 
in the first scenario discussed above. 

5. Discussion and conclusion 

In the present paper I have applied model (2.1) proposed in [I81 for studying 
antiferromagnetic and superconducting states of a heavy-fermion compound with the close 
packed hexagonal structure, such as Wt3. I have considered the antiferromagnetic and 
superconducting transitions that can occur at temperatures below the Kondo temperature 
T, when the system is in the heavy-fermion state formed by the coherent Kondo effect. 
It has been shown that there are two possible scenarios of the temperature behaviour. 
In the first scenario there is one antiferromagnetic transition at TNI and two consecutive 
superconductio,o transitions at TCj and Te2 (TNI > Tcr TCz). In the second scenario one 
superconducting transition follows two consecutive antifemmagnetic transitions (TN~ > 
T N ~  > Tc). In order to understand the origin and structure of the antiferromagnetic and 
superconducting states, it is necessary to take into account that each unit cell of UPt3 contains 
two U atoms at positions I and 2, which lie in two adjacent atomic planes (see figure 1 
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and equation (2.2)). The successive antiferromagnetic and superconducting transitions are 
related to two different groups of electrons. Only the electrons with wavenumber k lying 
in the regions S21 and S2z of the reduced Brillouin zone (see figure 2) participate in the 
antiferromagnetic and superconducting transitions occurring at TNI and T,, , respectively, 
and preserving the symmetry between the U atoms in each unit cell. The other group of 
electrons with k lying in the regions Qs and Q., takes part in the second superconducting 
or second antiferromagnetic transitions, which disturb the symmetry. 

In the first scenario the antiferromagnetic structure represented in figure 1 appears at 
T N , .  In the antiferromagnetic state the magnetic moments of the U atoms at positions 1 and 
2 within each unit cell are the same ( M f )  = M y ) ) .  The antiferromagnetic transition opens a 
gap on a portion of the Fermi surface. If the portion is sufficiently small, then the jump in the 
specific heat at TNI may be too small to be observed in specific-heat measurements. In my 
previous papers [IS, 191 it has been shown that the magnetic moments of rare-earth atoms 
in the antiferromagnetic state are of order f i~ ,  in agreement with the experimental data 
[4,51. 

With decreasing temperature below TNI long-range antiferromagnetic order stimulates 
at T,, the supercoriducting transition due to the non-phonon mechanism proposed in 
[IS]. Below T,I the superconductivity manifests itself in non-zero local order parameter 
Ai (see equation (3.6)). Although the order parameter looks like superconducting 
coupling between the conduction electrons and f electrons, in reality the non-zero order 
parameter Ai results from the superconducting coupling between heavy quasiparticles 
in the lower antiferromagnetic band. These heavy quasiparticles are the hybridized 
particles formed by f electrons, giving the main contribution, and conduction electrons 
(see equation (3.12)). Below T,I the anomalous correlation function (ulok(5)a,,-~,--1.(T')) 
becomes non-zero and looks like the conventional anomalous correlation function with k- 
dependent superconducting order parameter Ak. Relating the local order parameter A; with 
the anomalous correlation function, one obtains the equation determining Ak [19]. 

In the superconducting state the local superconducting order parameter Ai is modulated 
by the antiferromagnetic wavevector &I in such a way that the values of Ai at positions 
1 and 2 within each unit cell are the same (A(]) = A(')). The superconducting gap is 
open only on those parts of the Fermi surface which lie in the regions S21 and S22 of 
the reduced Brillouin zone shown in figure 2. The rest of the surface remains ungapped. 
Such an anisotropic character of the superconducting gap may be revealed by measuring, 
for example, the angular dependence of the ultrasonic attenuation in the temperature range 
TCl > T > TCz. However, for that purpose it is necessary to have a singledomain sample. 
The anisotropy may be smeared in polydomain samples. 

The second order phase transition at Tc2 breaks down the symmetry between the U 
atoms within each unit cell. Below Td the magnetic moments of these two U atoms and the 
values of the local superconducting order parameter at the atoms have different magnitudes 
( M j ' )  # M y ' ,  A(') # A(')). The breakdown of the symmetry leads to the appearance of both 
SDW and superconducting gaps on the remaining part of the Fermi surface lying in the regions 
523 and S24 of the reduced Brillouin zone. The phase transition at Ta may be classified as 
a mixed magnetic-superconducting transition. The formahon of the state with M,'" # Mj" 
at T < TC2 may be revealed by using neutron-scattering measurements, for example. The 
coupling between antiferromagnetism and superconductivity has been observed in [201. Is 
the effect equivalent to the breakdown of the magnetic symmetry between the U atoms 
within each unit cell predicted by the model (2.1)? Further experimental and theoretical 
studies are necessary to give an answer to the question. 

I have found also that at T c T,z the superconducting gap is anisotropic and vanishes 



along lines on the Fermi surface. Consequently, the specific heat has  TZ behaviour at T 
below Tc2. 

The system under consideration can also demonstrate the other scenario of the 
temperature behaviour: TNI > TNZ > T,. In the temperature range TNI =. T > TNZ 
the system is in the antiferromagnetic state with M f )  = My). The magnetic symmetry is 
broken down by the phase transition at TNZ. Below TNZ the antiferromagnetic state with 
M:') # M,(" arises. Only one superconducting transition can occur in the antifemomagnetic 
state. The superconducting state at T < T, has the same properties as the state appearing 
below Tc2 in the first scenario. 

In the present paper I have not studied the magnetic field effect on the phase diagram 
of model (2.1). Thus, the question about the N-T phase diagram still remains open. 
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