IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Microscopic theory of antiferromagnetic and double superconducting transitions in UPt3

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys.: Condens. Matter 6 1749
(http://iopscience.iop.org/0953-8984/6/9/016)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 12/05/2010 at 17:47

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/9
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens, Matter 6 (£994) 17491760, Printed in the UK

Microscopic theory of antiferromagnetic and double
superconducting transitions in UPt; '

A V Goltsev
Ioffe Phystco-Technical Institute, Politechnicheskaya 26, St Petersburg 194021, Russia

Received 26 Janvary 1993, in final form 30 April 1993

Abstract. The antiferromagnetic and double superconducting teansitions in UPts are studied by
using a high-degeneracy model. Within the model, superconductivity is stimulated by long-range
antiferromagnetic order. Two scenarios of the temperature behaviour are possible for the close-
packed hexagonal structure. In the first scenario the double superconducting transition follows
an antiferrornagnetic transition (Tn; > Tet > Tiz). In the second scenario the superconducting
transition follows two consecutive antiferromagnetic transitions (Tt > Twz > Te}. For both
scenarios the superconducting gap is anisotropic and vanishes along lines on the Fermi surface.
The specific heat has the T2 behaviour in the superconducting state.

1. Introduction

During the last few years much attention has been devoted to studying the properties of the
heavy-fermion superconductor UPty (see, for example, recent review papers {1,2]). With
decreasing temperature, the heavy-fermion, antiferromagnetic and superconducting states
appear successively and coexist. The heavy-fermion state is formed by the coherent Kondo
effect at temperatures below the Kondo temperature T, In this state electrons have enhanced
mass m* 2 200mq near the Fermi surface [3]. Neutron-scattering experiments have revealed
that an antiferromagnetic order arises at the Néel temperature Ty = 5.5 K [4,5]. The
corresponding antiferromagnetic structure is represented in figure 1. The moments of the U
atoms in the state are anomalously small (0.02 pg) [4,5]. Then, at temperature T, ~ 0.5 K
the compound undergoes-a superconducting transition [6]. Below T the antiferromagnetic
order and superconductivity coexist. More detailed investigations have shown that there
are two consecufive superconducting transitions [7]. Moreover, UPt3 has a complete H-T
phase diagram [7-10]. For the purpose of explaining the splitting of the superconducting
transition, a phenomenological model based on the mutual influence of multicomponent
d-type superconductivity and antiferromagnetism has been proposed and studied in detail
[10-14]. , _

The superconducting state of UPt; has unusunal properties. In that state some physical
parameters demonstrate a power-law temperature dependence, while the Bardeen—Cooper—

Schrieffer (BCS)} theory predicts a simple exponential law. For example, the observation of -

the 72 dependence in the specific heat has been reported in {7, 15, 16]. Such a ternperature
behaviour of the specific heat can be related to an anisotropic superconducting gap, which
vanishes along lines on the Fermi surface [17]. '

" Unusual superconducting properties of UPt; and other heavy-fermion superconductors
such as URupSia, UBejs and CeCupSia have stimulated an active search for an
unconventional mechanism of superconducting coupling. A detailed list of references on
the problem may be found in [2].

0953-8984/94/091749+12$19.50 © 1994 IOP Publishing Ltd ' 1749
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Positions of the U atoms in UPtz are

Figure 1.
represented by open and full circles in two adjacent
planes, respectively. Arrows represent the moments of

the U atoms. @ and b ‘are the translation vectors of
the close-packed hexagonal structure. A and B are
the translation vectors of the antiferromagnetic structure
that arises at Ty = 5.5 K in UPt3 [4,5].

Figure 2. XY plane of the first Brillouin zone for
the close-packed hexagonal structure. Dashed lines
represent the reduced Brillouin zone corresponding
to the antiferromagnetic structure of UPtz shown in
figwre 1. £); and Oy are the reciprocal vectors of
the antiferromagnetic structure. Dotted lines divide the
reduced Brillouin zone into four regions £y, 22, Q3
and Q4.

Recently I have proposed a new non-phonon mechanism of supercondactivity for
heavy-fermion superconductors [18]." I have found that long-range antiferromagnetic order
appearing at Ty < Tk can change the character of the local exchange interaction between
conduction electrons and localized f electrons in such a way that at T < Ty this interaction
generates the superconducting coupling between heavy electrons near the Fermi surface.
This mechanism of superconductivity leads to the anisotropic superconducting gap, which
vanishes along lines on the Fermi surface [19]. Within the modei I have also studied the
properties of the antiferromagnetic state that precedes the superconducting transition. It has
been found that the moments of rare-earth ions in the state are of the order 1072 g in
agreement with the experimental data.

In the present paper I apply the mode] to describe antiferromagnetic and supetconducting
transitions in heavy-fermion superconductors with the close-packed hexagonal structure.
UPt; has such a structure, for example. For the structure the model predicts two possible
scenarios of the temperature behaviour. In the first scenario an antiferromagnetic transition
occurs first with decreasing temperature below the Kondo temperature . Then, a double
superconducting transition takes place, that is Ty > To > Ti2. In the second scepario
two consecutive antiferromagnetic transitions occur first. Then, the system undergoes the
superconducting transmon (Tzi > Tz > T2). In both scenarios the superconducting state
is characterized by an anisotropic gap, which is equal to zero on lines on the Fermi surface.

The paper is organized as follows. In section 2 the structure of the antiferromagnetic
order in UPt; is analysed. In section 3, I study peculiarities of the antiferromagnetic state
and the % dependence of the spin-density-wave (SDW) gap. I find that the system contains
two antiferromagnetic instabilities. In section 4 it will be shown that these antiferromagnetic
instabilities can stimulate two consecutive superconducting transitions. The particularities
of the superconducting states and the k& dependence of the superconducting gap are studied
in section 4 also. Finally, section 3 contains some concluding remarks and a proposal for
an experimental verification of the model under consideration.
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2. Antiferromagnetic structure in UPt;

UPt3 has the close-packed hexagonal structure. Two adjacent planes of the structure are
represented in figure 1. The corresponding translation vectors are

a=(-1v3a,-32,0) b=(v32-4a,0) ¢=(0,00. @D
A unit cell of the structure contains two U atoms at positions
p1=00,0,00  pr=3}a+3b+je=(3v3a —3a,50). 2.2)

In figure 1 the U atoms at these positions are denoted by numbers 1 and 2, corrsspondingly.
The reciprocal vectors are

g = 27:(-«/5/3(1, ~1/a,q) gy = 27:(\/5/3(1, —=1/a,® g3 =2m(0,0, 1/¢).
' (2.3)

Neutron-scattering measurements have revealed that a long-range antiferromagnetic
order arising at Ty = 5.5 K has the structure represented in figure 1 [4]. The translation
vectors of the antiferromagnetic structure are given by

A=b—a =300 B=-a—-b=(0,a,0 C=c (2.4)
Consequently, the corresponding reciprocal vectors are

Q1 = 1(g> — 1) = 27(+/3/34,0,0)
Q=g +gz) =27(0, 1/a,0) (2.5)
G=g

It may be easily shown that the unit-cell volume (£2, = {A-B x C|) of the antiferromagnetic
structure i3 twice as large as the unit-cell volume (2 = |a-bx¢| = +/3a%¢/2) of the initial
lattice.

The first Brillouin zone of the close-packed hexagonal lattice looks like a prism with a -
regular hexagon as a basis (see figure 2). The antiferromagnetic order results in a reduction
of the zone. The reduced Brillouin zone is a rectangular prism formed by reciprocal vectors
{2.5). The volume of the reduced Brillouin zone is tw1ce as small as the volume of the
initial zone.

3. Antiferromagnetic ordering

I shall study antiferromagnetism and superconductivity of heavy-fermion compounds by
using the Hamiltonian [18]

Ho = Zskc‘,kcgk + L S fui — N7 E V(Bif it +HO) + AN E S, sﬂ

~ BN fhet e pi fri - | . 3.1)

oni
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where k is the wavenumber, the spin quantum numbers o and # run from —j to j, and
N = 2j + 1 is the spin degeneracy. The sum over i is the sum over U atoms. The
exchange constants J; and J, are supposed to be positive. The spin operators SZ and S}
are determined as

8§ = Za o S = Zac;ca;. (3.2}
g ’ o
Within the slave-boson method, the constraints

bEbi+ Y i fai = N ' - (3.3)
' a

are imposed on each lattice site R;.

In the framework of the mean-field approach, the effective Hamiltonian (Hyg) and
mean-field free energy (Fup) of the model under consideration are given by the following
equations [18,19]: - ' '

Hyr = Z'Ekcgkcﬂ'k + 2{35, fm Virg +Co1 + HC) + Jl l(Mc;  + My Sg)

- (A fEet 4+ 1)) (3.4)
Fp=—NY [ MMy, — I AEA; + (go — 1) — T InSpexpl—B(Bar — V]
(3.5)

where A = &f — ¢, &f Is the renormalized energy of the f level, p is the chemical

potential, and N, is the operator of the total number of electrons. The order parameters
roi, My, M, A; and the energy gf may be found by solving the equations
|

M; := N~2(SE) My = N72(S%)

v ~
roi :-N_l Z‘:(Cjifaf) A; = LN Ig(c—afﬁrf) (3.6)
S fot) = Ngo = 1) = Ng

where nr is the occupancy of the f level per orbital. These equations result from the
minimization of the free energy Fyr with respect to the order parameters.

I shail consider only the case when the Kondo temperature Tk is much larger than 7y and
T.. This enables us to neglect the effect of antiferromagnetic ordering and superconductivity
on the parameters rp and ¢f that characterize the heavy-fermion state.

Let us study the properties of the antiferromagnetic state with the structure represented
in figure 1. One can easily check that the antiferromagnetic order with wavevector Q1 (2.5)
corresponds to the annferromagnetlc structure. In the anuferromagnetlc state we have

My = Migycos(@Q B + ¢i))-

Therefore, the spin density wave is characterized by four parameters: two amplitudes Mj
and M., and two phases o and ;. Howevcr it is more su1table to introduce four different
parameters. One can write

Myey = My (Bi) = Mf(c)(Rnim + p:) = Mf(c) cos 1 Ry (3.1
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where Ry, =na +[b + me, and R; = Ry, + p; is the radius vector of the U atoms
in the lattice. The vector p, (s =-1,2) is determined by equations (2.2). The quantities
Me ® and M; ® are the moments of the U afoms at positions 1 and 2 within each unit cell
(see figure 1) Since cos QRym = (—1)**!, one can conclude that the antiferromagnetic
structure (3.7) is equivalent to the structure represented in figure 1. M{" and MP are the
magnitudes of the spin density wave (SDW) formed by conduction electrons at the points
pr and po.

Substituting (3.7) into (3.4),. one obtains the mean-field Hamiltonian describing the
antiferromagnetic state:

Hyp = Z Z > Z[av;;(Evkbva,kbua-k + Eup bl buop) + (ALED + Bus +HO)] (3.8)

!-—l =1 & ke

where k runs over regmns £ (l =1,...,4) of the reduced Brillouin zone (see figure 2).

Moreover, . 7

n=k—gq g1=0 =—-0 B=Q ga=-=0> ‘ (3%

Ay = J1 > exp(—igro ME vuvup, + ME uittyp). (3.10)
s=12 .

The hybridized bands E,; (v = 1, 2) are determined by the equations
Ey = 3lex +ef —[(ex — &)’ +4V2ri)% 610
By = d{on+ 6 + [(ex — 8)* + 4V, '

The annihilation operators b,,; for quasiparticles in these bands are related to the
operators ¢y and fix by the Bogoliubov transformation

Cok = ), thyibyo foe= Y Uu:’cbua'k

v=1,2 v=1,2 )

o ) (3.12)
i1y = Uz = COS ¥y o = —Up = SiNog
cotoy = (c‘,‘;Ee — Eu)/Vry.

It is well known that the quasiparticles in the band Ey; near the Fermi surface have
enhanced mass m*/mg = cos~2ap ~ 1/prT;, where pg is the density of states on the Fermi
surface.

In order to find the energy spectrum in-the antiferromagnetic state, it is necessary to
diagonatize the Hamiltonian (_3,8). In qccordance with [18] we have :

Eiko = 3{E1p + Enx — [(Brp — En) + 4|41 F1/2)
Exo = HE1p+ En+ [(Erp — En) + AL
Esie = §{Eap + Eax — [(Ezp — Ex)® + 414711/

Eae = §{E2p + Bz + [(Ezp — Ex)* + 4| AT 1}

(3.13)

where p = p; ifk € Q.
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I shall only consider the case when the total number of electrons (#; = n.+#5) per orbital
is smaller than 1/2. It means that the lower antiferromagnetic band &£y, is partially full
and the quasiparticles near the Fermi surface have enhanced mass. The antiferromagnetic
transition opens a gap on those flat parts of the Fermi surface which are near the surface of
the reduced Brillouin zone. Using (3.10) and (3.13), one obtains that the gap is

A& = 88 = 211/ NIID + moM{" /m*): + (P + modt® Y

+ (ML + moM® 1m*Y MO + mgM jm*) (3.14)
in the regions £2; and €25, and
A& = A&y = 201 [/ NIMD — MP + mo(M" — MP)fm*)| (3.15)

in the regions 23 and Q4. According to these equations, in the general case the SDW gap
is anisotropic. A more detailed analysis of the anisotropy will be given below.

For the purpose of determining the Néel temperature and the structure of the
antiferromagnetic state, let us consider an expansion of the free energy (3.5) in M, (”

The magnetic contribution of order O(Mz) to the free energy per orbital and unit cell i IS
Fm = =50 (G e(Q0)a2 + 3x:(Q)aF + acad F(Q1) + I+ 5 1xe( @) +4xe(Q2)15

+ 510e(Q1) + 4xe(QD W + bebl F(Q2) + 771} (3.16)
where |

toy = MB+ ML b = MY - MD. 317
The correlation functions Y.m(0) and F(Q) are defined as

. O = T-I1N-31(S
Xen(@) {{See (@) Sen (=M 5.180)
F(Q) = T N3 ((SH(Q)SH(—0)))

where

SHQN= . ochcm—g,  SUQD = Y. ochilor-g (3.19)

o ke1+52 o, kel +0s

In the temperature range Ty < T < Tk the correlation functions (3.18a) may be written as

RS 2 p \@h(Eu/2T) ~ taoh(Eyy /27)
XG0 = 6NZ ;gm vk%pp Eu — EMP
— j(] +1) ) tanh{E; /2T) — tanh(E,p /2T)
Q1) = =5 Zn:,;m A Ey T E o (3.18B)
+1 tanh(E, /2T —tahE 2T
FQn = J(gNz )szvk“vp“ukuup (Bu/20) — tanh(Eyy ] >

Y Redy Eve = Eyp

where @y =@+ and p=k —Q;for! =1, and £, = Qs+ Qs and p =k — @, for
I =2, It is important to note that the functions x.» (@) and F(Q) are determined only
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by the energy spectrum in the regions ; and $2;, whereas x.{Q2) and F{Q;) depend
oniy on the energy spectrum in the regions £23 and 4. In the limit N > 1 the functions
x(@) and F(Q) are of order O(1). The character of the temperature behaviour of the
functions (3.185) may be easily found in the case when the Fermi surface contains flat parts
that satisfy the nesting condition Eqx — i = y — Ej, in the regions Q; and €. One obtains
that xn{(Qn, F(Q:) ~ In(Tp/T) where Tp is the low-temperature scale (for details see
[18,191). ' ' ' - '
The Néel temperature may be found from the equation

det]dF /81:805] =0, - (3.20)

where A; = a, ar, be, br. Equation (3.20) has two solutions. The former corresponds to the
formation of an antiferromagnetic state with gy 7 0 and byp = 0, that is Mé(ﬂ = c% in

accordance, with (3.17). In other words, in this antiferromagnetic state the moments Mé”

and lez) of the U atoms at positions | and 2 within a unit cell (see figure 1) are the same.
The corresponding Néel temperature Ty is determined by the equation -

A1+ ZFQOF = 97 x(@)x:(21). . (321)

The other solution corresponds to the formation of an antiferromagnetic state with e =0
and by 7 0, that is Mcf(lt)) = —Mc((zf}) The corresponding equation for the unrenormalized
Néel temperature Ty is ,

41+ JF(O)I? = TPxe( Q1) + 4x:(02)xe (1) + 43 (2] (3.22)

The antiferromagnetic structure observed in UPt; [4] and represented in figure [ is the
structure with M}” = Mf(z). That is why I shall only study the case T > T that takes
place if x5 (21) > 25 (Q2). Using equations (3.14) and (3.15), one obtains that at Ti;
the sSDW gap is open only on those parts of the Fermi surface which lie in the regions £
and Qy, i.e. A& 2 £ 0, A4 = 0. In other words, in k-space the SDW gap does not open in
directions normal to the wavevector () of the antiferromagpetic structure. Moreover, in the
antiferromagnetic state the energy spectrum in the regions &3 and 24 is not renormalized,
because at Mf((g = M}fc)) the parameter A, (3.10) at p =k + Q; is equal to zero and,
consequently, £y, = E for & € 23, Qa. ’

In my previous papers [18, 19] it has been shown in the framework of model (2.1) that
long-range -antiferromagnetic order changes the character of the exchange interaction with
the constant J». This interaction brings about the superconducting coupling between heavy
electrons near the Fermi surface. Therefore, with decreasing temperature there are two
possible scenarios of the temperature behaviour. In the first scenario the superconducting
transition occurs before the second antiferromagnetic transition, i.e. 7y > To > Tz, In the
other scenario the second antiferromagnetic transition at Ty follows the transition at Ti-
Then, the system undergoes at T, the superconducting transition, i.e. Ty > T > Te.

4. Donble superconducting transition

First 1 shall consider the scenario Ty; > T; > T and show that there are actually two
consecutive superconducting transitions, Ty; > Ty > T
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In the superconducting state the local superconducting order parameter A; (see
equation (3.6)) becomes non-zero and has the following space dependence [18]

A= AR = ARy + pi) = A cos Q1 Ruim. 4.0

where A% and A® are the values of the local superconducting order parameter at positions
1 and 2 within each unit cell. After dlagonahzatlon of the Hamiltonian (3.8) described in
{18], the mean-field Hamnltoman 3 4) is given by

He = Zﬁlakahkamk 3 Z Z [ﬂok(Ql}alakal —a,=k + HC]

o ke 4+,

- % Z [Aerk(QZ)a[gkal,_a,..k -+ HC] 4.2
o keQst ) .

where

Bor(Q)) = —(0/2N) /1 (mo/m”)' (3d(ar — ac) + g(br — be)]

X cos[2f(Q 1)1/ (Care — E1ko) (4.3}
Agi(Q2) =—(0/2N) (mo/m*)' P g(bs — be) cos[28.(22)]/ (Ests — Ente) “4)
d= AW A® g AW AP 4.5)
cos[2B(D)] = (B, — Ew)/[(Erp — Euy +41ARFT2. {4.6)

At T close to T, the éuperconducting contribution O(A?) to the free energy (3.5) per orbital
and unit cell may be written as

Fo = 305 G4P + lglh) ~ 510 (a0 — a0) + 5(br = BOPK (1) = g br = P K (Q2)
@7

where

Jimy Z Z o2 cos?[26(Q1)) tanh[ €y — ) /2T

K(g)) = m*N,N3 (Eare — EroP? (Eike — 1)

(4.8)

where N, is the number of unit cells.

Let us determine the structure of the superconducting state and crmcal temperature T..
The critical temperature T;; of the first superconducting transition may be determined from
the equation 82, /8d 3d* = 0. Taking into account that, at T < Tii, aey 7 0 and begy = 0,
this equation may be written as

2 1o — a2 K(0) = 1. (49)

In the general case the function K(Q;) is proportional to In(%/T') at low temperatures.
At T < Tg the superconducting state with 4 = 0 and g = 0 arises. It means,
in accordance with (4.5), that ATV = A® £ 0, Below 7T antiferromagnetism and
superconductivity coexist. The superconductmg transition opens the gap [Aa»k(Qg)[ on
the Fermi surface. Because at T < T; the system is in the state with Mcm = Mc((f))

and AW = A®, equations (4.3) and (4.4} give [An ()] # 0 and [Age(Q2)| = 0. In
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other words, the superconducting transition at T;) opens the gap only on those parts of the
Fermi surface which lie in the regions §; and £2; of the reduced Brillouin zone. The rest
of the Fermi surface remams un apped. Because the superconducting state preserves the
magnetic symmeiry Mf(c) = Mf(c), the energy spectrum in the regions €5 and €, is still
unrenormalized.

With decreasing temperature below T, the system ender consideration can undergo
another superconducting phase transition into a state with broken symmetry between the U
atoms in the unif cell. To find the corresponding critical temperature Ty, it is necessary
to consider the quadratic expansion of the free energy (3.5) in parameters b and g. Using
equations (3.16) and {(4.7), one obtains

Fous = =3I 3 1xe(@1) + 4D + Lxe(01) +4Axe(@DIE + bob F(Q2) + I}
+ 375 8" — g ar = ac)(be — be)d™g + dg")K (Q1). (4.10)

Here the correlation functions xc(Q1) (3.18a) and X((Q;) must be calculated taking
into account both antiferromagnetic order with Mf((lc)J = f%)) and superconductivity with
Aqp{C), because they are determined by integration over the regions $2; and Q3 where the
energy spectrum is strongly renormalized. In order to find X(Q)) it is necessary to replace
in (4.8) the function &3 — & by the function [(Eire — 1) + Ak (QDFIY2. AL T < Ty
the functions are regular functions and decrease with decreasing temperature. However, the
functions y.q(Q2) and F{Q,) preserve the singular behaviour (~ In(Ty/7T)) determined
by (3.185), since the energy spectrum in the regions £25 and £24 i8 still unrencrmalized.
It is interesting to note that the last term in equation (4.10) may be written as

= 2mf? — MY — (MP = MEPYIQAD? — (AP HE(Qy).

Thus, it looks like a contribution to the free energy arising due to coupling between
antiferromagnetism and superconductivity in the phenomenological approach {10-14].

The critical temperature Ty, may be found from the equation det]azfm/ Ar; 9r;| =0
) wherc A; = by, by, g, g*, which may be written in the form ’

A1+ WF Q)] = Jixe(Q1) + 4xe(Q)]Ixe(@1) + 4xe(@)] + §aler — @o)[dPK?
x (@ H3[xe(@1) + x(@D)] + Xe(Q2) + Xe(@2) + F(Q2) + ') (4.11)

As discussed abave, at T < Ty < Ty the correlation functions xcs(Q1) and F(O:)
are strongly renormalized, whereas the functions xen((Q2) and F({Q;) remain singular
(~ In{Ty/ T)). This fact permits the existence of a solution of equation (4.11).

At T < T the magnetic order parameter beg = Mf((lc)] + Mf({zc)) and superconducting
order parameter g = AW 4+ A® simultaneously become non-zero. Therefore, in this state
we have MY 2 MP and AD % A@, It means that the second-order phase transition
at Tio dlStl.ll‘bS both magnetic and superconducting symmetry between the U atoms within
each unit cell. :

It is interesting to note that equanon (4.11) for Tn differs from equation (3.22) for the
unrencrmalized critical temperature Ty by the last term on the right-hand side. This term
results from an interaction between magnetic and superconducting fluctuations. Moreover,
since the term is positive, this interaction precipitates the transition at Ty One can classify
the phase mransition at Tz as a mixed magnetic—superconducting transition. As I have
shown above, the part of the Fermi surface lying in the regions £2; and £2; is gapped in the



1758 AV Goltsev

temperature range Ty > T > Tz. The remaining part of the surface Iying in the regions
Q3 and €4 is ungapped. The phase transition at T;; opens both the SDW gap A&; 4 and the
superconducting gap |Ag;(Q2)| determined by equations (3.15) and (4.4), respectively, on
the remaining part of the Fermi surface in the regions £2; and Q4 of the reduced Brillouin
zone.

Let us study the & dependence of the superconducting gap [An (@) at T < T
The dependence is mainly determined by the function cos[28,(02)] (see equations (4.3) and
(4.4)). The function is equal to zere on the surface of the reduced Brillouin zone (the dashed
lines on figure 2) where the following equalities hold: Ey; = Eix_g,, Ejp = En—g,. Let
us consider an intersection between the Fermi surface (£, = ) and the surface of the
reduced Brillouin zone. In general, we obtain some lines along which we have cos(28) =
In accordance with (4.3) and (4.4) the superconducting gap ] A, (Q)| is also equal to zero
along the lines. Such an anisotropy of the superconducting gap leads to the T2 behaviour
of the specific heat at T < Tz [17]. This theoretical result is in agreement with the
specific-heat measurements for UPt; [7,15,16].

Now I briefly consider the other scenario (Tiqy > Twz > T¢) of the temperature behaviour
of model (2.1). As discussed above insection 3, in the temperaturc range Ty > T > Ty the
system is in the antlferromagnetlc state with M; (1) = Mf This magnetic symmetry between
the U atoms in posmons 1 and 2 within each unit cell is broken at the critical temperature
Ty determined by equation (3.22) where x.(Q1) and x;(Q)) have to be calculated with
account of non-zero Mc(n, whereas the functions x.5(Q2) and F{Q2) are still singular, An
antiferromagnetic state with Mm # M, (2) is formed below Tyz. The antiferromagnetic state
stimulates a superconducting tran51tmn The corresponding critical temperature 7, may be
found by using the free energy (4.7) at g # 0 and by # O

(5" = §(ar — @) K(@DWI5" — (bs — be)*[2K (Q2) + $ K (Q0T)
= & (@r — o) (bs — beY K7 (@) @

where K(Q) is determined by (4.8). At T < 7. the superconducting state with
superconductmg order AW 2t A® js formed and coexists with the antiferromagnetic state
with M #* My @ The superconducting state has the same properties as the state at T < T
in the ﬁrst scenario discussed above. |

5. Discussion and conclusion

In the present paper 1 have applied model (2.1) proposed in [18] for studying
antiferromagnetic and superconducting states of a heavy-fermion compound with the close-
packed hexagonal structure, such as UPts. I have considered the antiferromagnetic and
superconducting transitions that can occur at temperatures below the Kondo temperature
T when the system is in the heavy-fermion state formed by the coherent Kondo effect.
It has been shown that there are two possible scenarins of the temperature behaviour.
In the first scenario there is one antiferromagnetic transition at Ty and two consecutive
superconducting transitions at Ty and T (Tny > Tt > Ts). In the second scenaric one
superconducting transition follows two consecutive antiferromagnetic transitions (Tng >
Tz > To). In order to understand the origin and structure of the antiferromagnetic and
superconducting states, it is'necessary to take into account that each unit cell of UPts contains
two U atoms at positions | and 2, which lie in two adjacent atomic planes {see figure 1



Magnetism and superconductivity in UPt; TR S -1I59 - -

and equation (2.2)). The successive antiferromagnetic and superconducting transitions are
related to two different groups of electrons. Only the electrons with wavenumber k lying
in the regions Q; and £, of the reduced Brillouin zone (see figure 2) participate in the
antiferromagnetic and superconducting transitions occurring at Ty and T, respectively,
and preserving the symmetry between the U atoms in each unit cell. The other group of
electrons with k lying in the regions Q3 and Qg takes part in the second superconducting
or second antiferromagnetic transitions, which disturb the symmetry.

In the first scenario the antiferromagnetic structure represented in figure 1 appears at
71 - In the antiferromagnetic state the magnetic moments of the U atoms at positions 1 and
2 within each unit cell are the same (Mf(]) = M;?). The antiferromagnetic transition opens a
gap on a portion of the Fermi surface. If the portion is sufficiently small, then the jump in the
specific heat at Tyy; may be too small to be observed in specific-heat measurements. In my
previous papers [18, 19] it has been shown that the magnetic moments of rare-earth atoms
in the antiferromagnetic state are of order 1072 pg, in agreement with the experimental data
[4, 5].

With decreasing temperature below Ty long-range antiferromagnetic order stimulates
at Ty the superconducting transition due to the non-phonon mechanism proposed in
[18]. Below T the superconductivity manifests itself in non-zero local order parameter
A; (see equation (3.6)). Although the order parameter looks like superconducting
coupling between the conduction electrons and f electrons, in reality the non-zero order
parameter A; results from the superconducting coupling befween heavy quasiparticles
in the lower antiferromagnetic band. These heavy quasiparticles are the hybridized
particles formed by f electrons, giving the main contribution, and conduction electrons
(see equation (3.12)). Below T;; the anomalous correlation function (@12¢(7)@1,—q,—£(T")}
becomes non-zero and looks like the conventional anomalous correlation function with k-
dependent superconducting order parameter A,. Relating the local order parameter A; with
the anomalous correlation function, one obtains the equation determining Ay [19].

In the superconducting state the local superconducting order parameter A; is modulated
by the antiferromagnetic wavevector @) in such a way that the values of A; at positions
1 and 2 within each unit cell are the same (A® = A®@). The superconducting gap is
open only on those parts of the Fermi surface which.lie in the regions £; and 22 of
the reduced Brillouin zone shown in figure 2. The rest of the surface remains ungapped.
Such an anisotropic character of the superconducting gap may be revealed by measuring,
- for example, the angular dependence of the ultrasonic attenuation in the temperature range
T > T > T.o. However, for that purpose it is necessary to have a single-domain sample,
The anisotropy may be smeared in polydomain samples. o

The second order phase transition at T,» breaks down the symmetry between the U-
atoms within each unit cell. Below T the magnetic moments of these two U atoms and the
values of the local superconducting order parameter at the atoms have different magnitudes
(M" % MP, AW £ AD), The breakdown of the symmetry leads to the appearance of both
SDW and superconducting gaps on the remaining part of the Fermi surface lying in the regions
23 and €4 of the reduced Brillouin zone. The phase transition at T;, may be classified as
a mixed magnetic~-superconducting transition. The formation of the state with Mfm * Méz)
at T < Tz may be revealed by using neutron-scattering measurements, for example. The
coupling between antiferromagnetism and superconductivity has been observed in [20]. Is
" the effect equivalent to the breakdown of the magnetic symmetry between the U atoms
within each unit cell predicted by the model (2.1)? Further experimental and theoretical
studies are necessary o give an answer to the question.

I have found also that at T < T, the superconducting gap is anisotropic and vanishes
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along lines on the Fermi surface. Consequently, the specxﬁc heat has 77 behaviour at T
below T.;. '

The system under consideration can also demonsate the other scemario of the
temperature behaviour: Ty > T > T.. In the temperature range Tvi > 7T > T
the system is in the antiferromagnetic state with M o= M . The magnetic symmetry is
broken down by the phase transition at Tyo. Below g the anuferromagnetnc state with

(l) ¥ My @ arises. Only one superconducting transition can occur in the antiferromagnetic
state. The superconducting state at T < T has the same properties as the state appearing
below T, in the first scenario.

In the present paper I have not studied the magnetic field effect on the phase diagram
of model (2.1). Thus, the question about the H—T phase diagram still remains open.
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